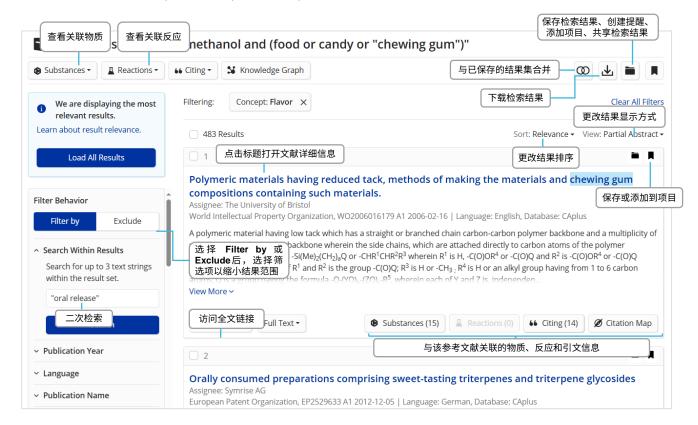


目录

- 2 CAS SciFinder®使用界面
- 2-3 文献检索
 - 4 CAS Lexicon
- 5-6 物质检索
 - 7 高级检索
 - 8 CAS Roles
- 9-10 CAS Sequences检索
 - 11 生命科学数据
- 12-13 反应检索
- 14-15 逆合成反应路线设计
 - 16 Markush
 - 16 CAS PatentPak®
- 17-21 CAS Formulus®
- 22-24 CAS Analytical MethodsTM
 - 25 登录,培训,支持

CAS SciFinder

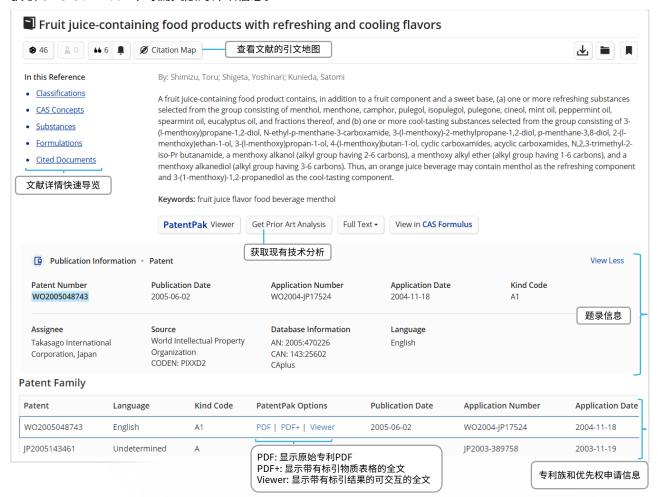
主界面及文献检索


CAS SciFinder拥有简洁的检索界面。

文献结果集界面

进行文献检索时,您可以在一个易于使用的界面中访问完整的检索结果集:

- 文献检索结果按照上一次设置偏好排序。
- 可以使用筛选项进一步缩小检索结果范围。
- 可以保存检索结果,发送链接,设置提醒,或将检索结果添加到项目列表。



文献详情和检索操作符

文献详情

获取 CAS SciFinder 中每篇文献的详细信息。

布尔逻辑运算符

如下所示,您可以使用布尔逻辑运算符进行文献检索,可以通过使用括号对逻辑运算符进行优先运算。

OR 要求文献结果中至少出现其中一个术语或两个术语都出现。

NOT 从检索结果中排除包含NOT后面的词语的文献结果。

使用通配符可在文献检索、物质检索以及二次筛选检索中获得更全面的结果,通配符可用于词中或者词尾。

* 可替换0到多个字符 例如: polymorph* | immunoglobulin*conjugate*

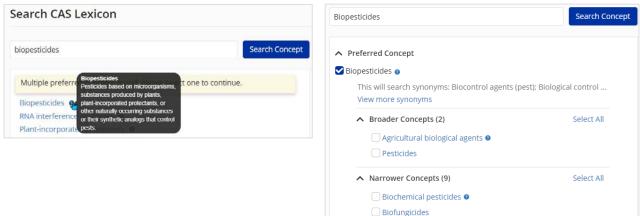
? 可替换0个或者1个字符 例如: benzonorbornen?

包含双引号的短语将作为精确短语进行检索。

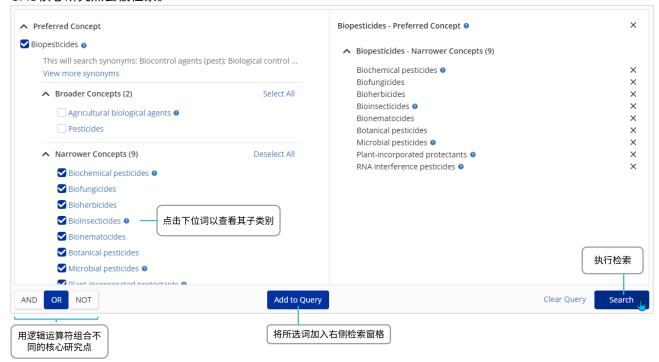
例如:搜索 "Programmed cell death protein"只会找到完全匹配 "Programmed cell death protein"的结果。

CAS Lexicon

CAS Lexicon概述


可以通过 CAS Lexicon,在CAS总的词库层级中浏览CAS科学家标引的概念词或核心研究点,以及重要的物质,并建立用于文献检索的检索式。

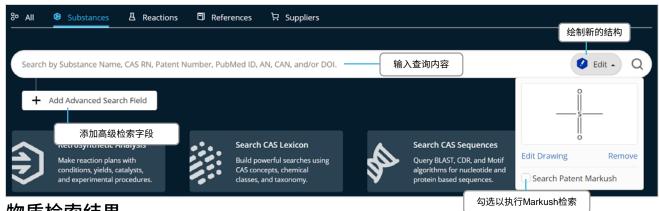
访问和浏览



首先点击主界面上的 "CAS Lexicon",输入检索词,然后浏览多层级词库列表。

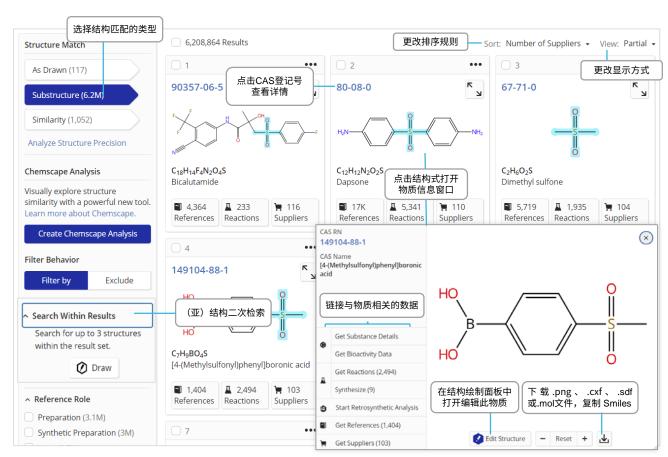
Bioherbicides

可以通过选择核心研究点并将其添加到右侧的检索窗口,来构建高度精准的 CAS Lexicon 检索。只有选定的 CAS核心研究点会被检索。



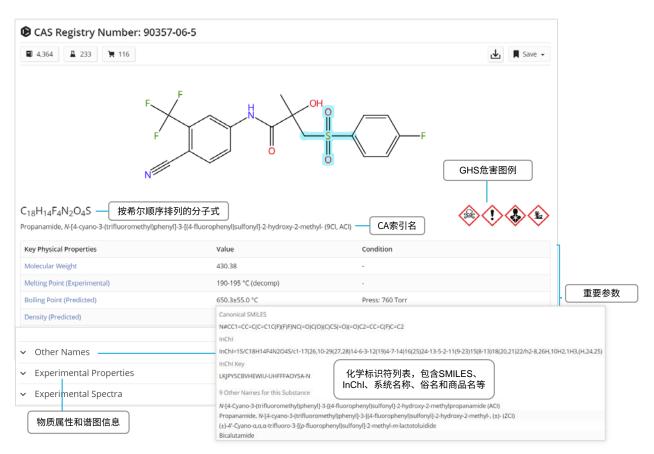
物质名称及结构式检索

物质检索


可以通过在检索框中输入一个或多个物质名称或标识符来检索物质。还可以通过绘制或编辑结构式进行检 索。以下是物质检索的示例:

Streptomycin 57-92-1 "Streptomycin sulfate" Sulfoximin* WO2019234160

物质检索结果


物质检索结果在一个直观的界面中呈现,您将看到与您的检索最相关的结果,包括物质名称、CAS登 记号和高分辨率结构式图像。

物质详情和结构绘制面板

物质详情

点击某个物质检索结果的 CAS 登记号时,会显示该物质的详细信息,包括结构式、分子式、物质性质及其他信息。

CAS 结构绘制面板

您可以使用 CAS 结构绘制面板绘制结构式和反应式进行查询。

高级检索

执行高级检索

您可以使用 CAS SciFinder 主搜索界面上的高级检索字段进行特定的文献检索和物质检索。

- 逻辑运算符的处理顺序为: OR, AND, NOT
- 仅使用单个高级检索字段时,无需使用逻辑运算符
- 允许使用通配符,例如 pollut*
- 最多使用50个高级检索字段(如果主检索字段也被使用,则为49个)

高级检索示例

高级文献检索

检索说明:

检索"pollution monitoring"以及 (polyethylene or polypropylene)

高级物质检索

检索说明:

检索钢材拉伸强度性能信息

可用的高级检索字段

您可以在高级检索项中利用多个检索字段和类别,包括:

文献检索

- _ 作者
- 期刊名称
- 发表机构
- 标题
- 摘要/关键字
- 核心研究点
- 物质
- 生命科学数据
- 出版年份
- 文档标识符
- 专利标识符
- 出版商

物质检索

- 分子式
- CAS 登记号
- 化学标识符
- 文献标识符
- 专利标识符
- 实验谱图
- 生命科学数据
- 生物学数据
- 化学性质
- 密度
- 电学
- Lipinski
- 磁
- 机械属性
- 光学与散射
- 结构相关数据
- 热学

CAS Roles

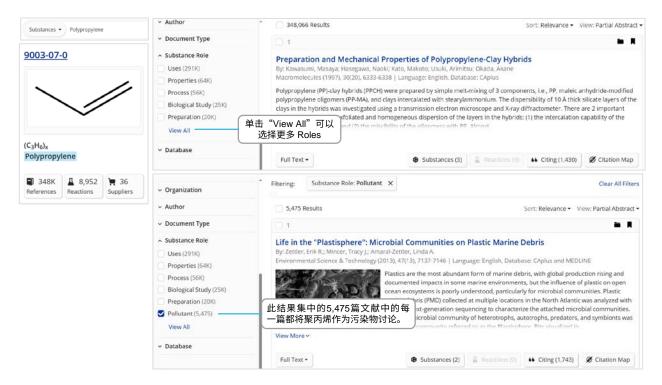
CAS Roles 概述

Roles与物质相关联,您可以聚焦感兴趣的物质及其特定研究角色相关的文献。

- Super roles 是广泛的类别,包括所有相关的具体的Role。例如分析研究(Analytical Study)。
- Specific roles 更为精确,比如分析研究中物质作为分析物(Analyte)使用。

物质检索结果中的Roles

在物质检索结果集中,Roles的筛选项表示对应物质在文献中的Role。



文献检索结果中的 Roles

每当您的检索信息命中物质的标引信息部分,也就是说,通过检索物质名称,或进行基于物质检索之后的 关联检索时,Roles将作为文献检索结果中的筛选项出现。

示例:我对(海洋)污染这一课题很感兴趣,怎样才能找到专门将聚丙烯描述为污染物(pollutant)的文献?

检索聚丙烯会得到许多文献结果。其中 Substance role 窗口显示了此检索结果集中的聚丙烯的所有适用 Roles。其中 Pollutant 这一项Role表明有5,475篇文献将聚丙烯描述为污染物(pollutant)。通过二次检索功能,或通过核心研究点筛选,可将检索结果限定于海洋污染。

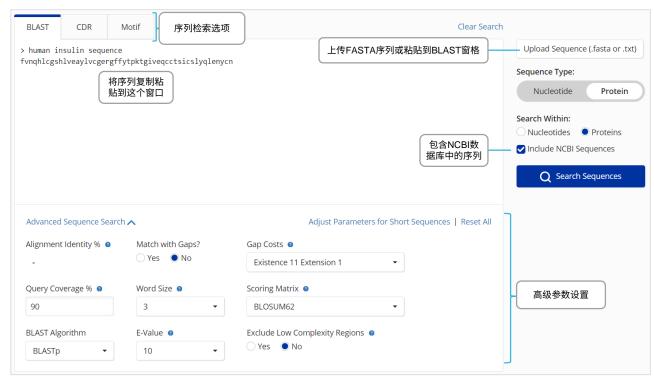
检索CAS序列

检索选项

可以使用三种不同的方式检索序列:

- BLAST: 检索相似序列

CDR:利用 CDR 检索抗体或T细胞受体Motif:检索氨基酸或核苷酸位点可变的序列


BLAST 相似性检索

BLAST 可用于检索相似的核苷酸或氨基酸序列。序列比对结果以直观的图形布局显示,并提供便捷的精确筛选功能,可根据比对一致性和覆盖率百分比进行筛选。可以直接查看命中序列的关联文献。

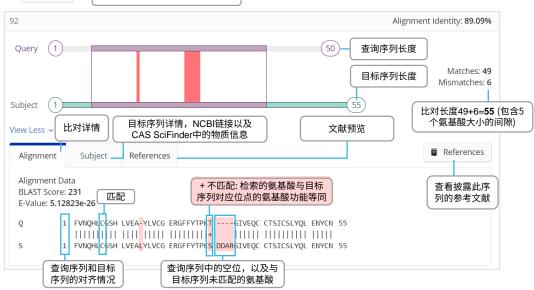
要执行BLAST搜索,请按照以下步骤操作:

- 在CAS SciFinder主界面中打开CAS Sequences模块。
- 从文件中加载序列,或粘贴序列到检索窗格中。
- 充分利用支持的格式,例如:包含由单字母代码表示的残基的序列(例如,在FASTA格式中)。
- 注意,序列输入可支持批量检索。
- 根据需要调整BLAST参数,然后启动序列检索。

BLAST 结果分析

访问结果

序列检索结果在最近检索历史(Recent Search History)和检索历史(Search History)中呈现。 点击 "View Results" 查看序列检索结果。



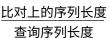
查看结果

在查看BLAST序列相似性结果时:

- 比对结果按序列一致性排序。
- 简化的图形概览显示比对质量。
- 不匹配部分以红线标示。
- 详细比对结果可在 "Alignment"标签中查看。
- 目标序列详情和相关专利预览可在单独的标签中查看。
- 点击 References 可获取相关文献。
- 支持下载 J XLSX 格式的结果文件。



筛选结果


E-值(期望值)


检索结果会随着筛选项调整而动态改变。

~ Query Coverage %

比对上的序列长度 目标序列长度

匹配上的氨基酸或碱 基对的数量 比对上的序列长度

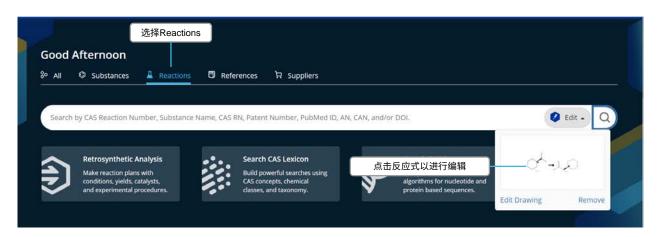
生命科学数据

检索靶点、配体和疾病

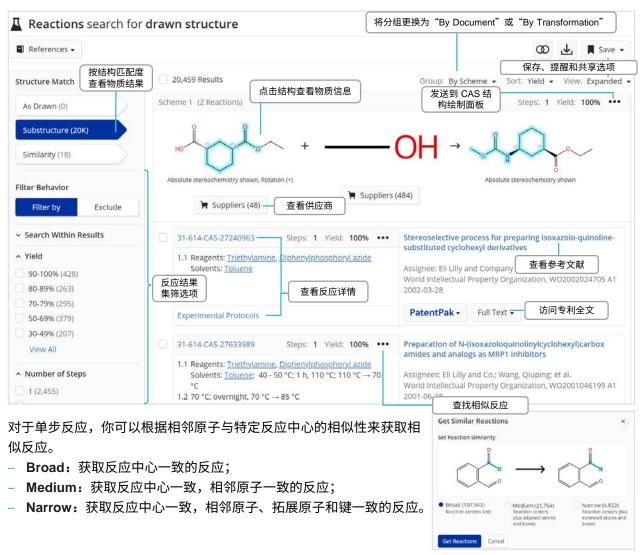
在 CAS Life Sciences 中利用高级检索字段进行物质检索或文献检索,您可以找到与靶点、配体和疾病相对应的生命科学数据。

文献检索和物质检索中的生命科学数据筛选项

物质详情页中的生命科学数据


文献详情页中的生命科学数据

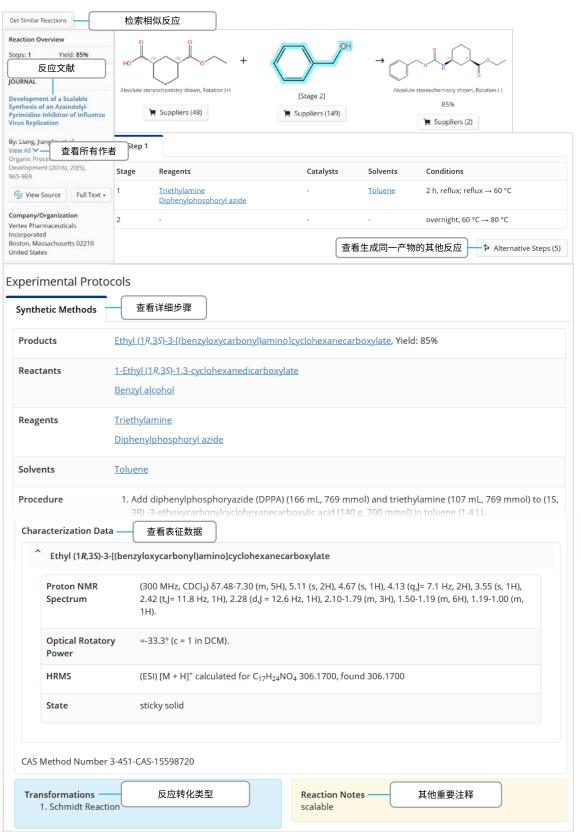
反应检索


进行反应检索

可以使用CAS反应登记号、物质名称、CAS 登记号、文献标识符、化学结构或基于文本来进行反应检索。

反应检索结果

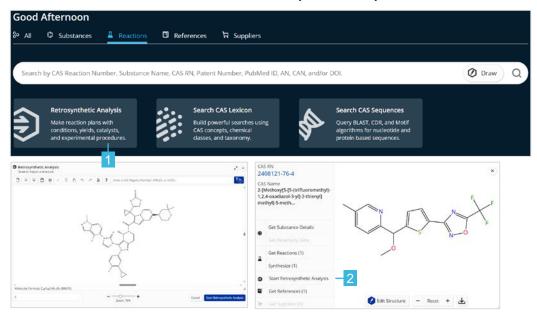
默认情况下,反应检索结果按照上一次的设置进行分组。



反应详情

查看反应详情

反应详情页为您提供了从文献及其 Supporting Information 中提取的信息,包括溶剂、催化剂、试剂、 反应条件和表征数据等。

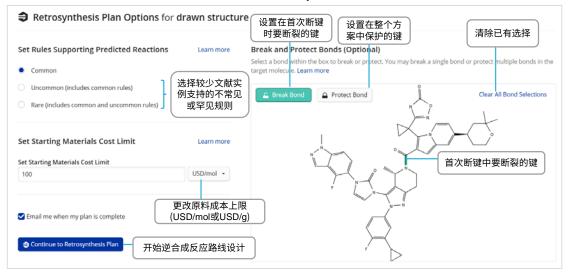


逆合成反应路线设计工具

开启逆合成设计

在CAS SciFinder中启动 "Retrosynthetic Analysis" 主要有两种方式:

- 1. 点击主界面上的"Retrosynthetic Analysis"选项,在绘制窗口中绘制或导入一个结构。绘制的物质可以是一个新颖结构(无文献报道过合成方法)。
- 2. 在现有物质的弹出窗口上点击 "Start Retrosynthetic Analysis" 选项。

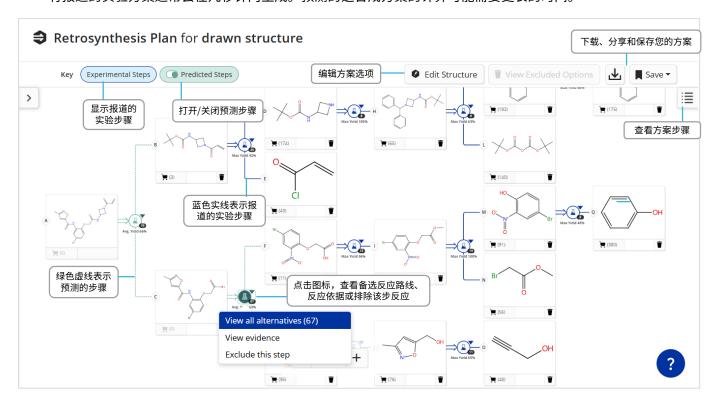


参数设置

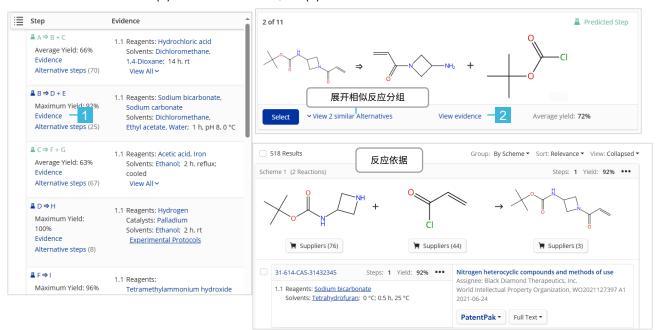
您可以编辑方案选项以:

- 在整个合成路线保护指定的化学键。
- 定义在首次断键中要断裂的键。
- 更改起始原料的成本限制。
- 选择较少文献实例支持的不常见或罕见规则。

设置好了所需的选项后,点击 "Continue to Retrosynthesis Plan"



逆合成方案和备选路线


打开方案

有报道的实验方案通常会在几秒钟内生成。预测的逆合成方案的计算可能需要更长的时间。

备选路线

您可以概览所有实验报道的和预测的反应,并将其与反应依据一起作为反应结果集显示。您可以通过以下 方式访问反应依据: (1)步骤概览中的链接,或(2)备选反应路线的反应式。

CAS Markush 检索及 CAS PatentPak

CAS Markush 检索

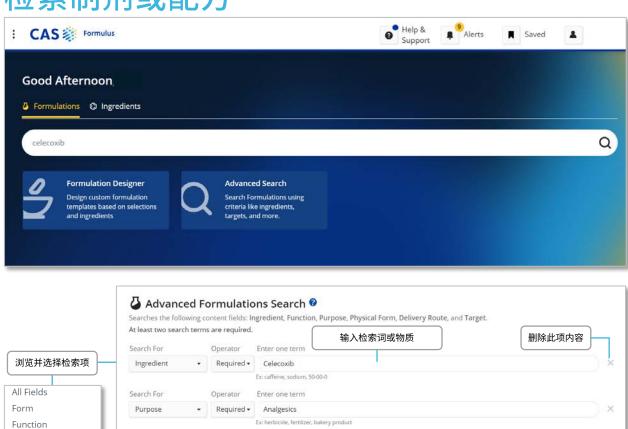
在物质检索模式下,可以使用"Search Patent Markush"选项执行Markush结构检索。

CAS PatentPak

在 CAS PatentPak 中有三种查看专利PDF的方式:

- PDF: 仅提供支持文本搜索的专利PDF文件
- PDF+: 附有标引关键物质的专利全文PDF文件

Ni, Co, and Mn, and the second positive active material shows a peak of Co, or the first positive active material shows peaks of Ni and Mn, and the second positive active


QCAS科学家标引的重 要物质定位标记

- 17. The lithium secondary battery according to claim 16, wherein the charging and the discharging is performed at a charge rate between 0.2 and 1.5 C and a discharge rate
- 18. The lithium secondary battery according to claim 15, wherein the charging and the discharging is performed at a charge current density between 0.1 and 5.0 mA/cm³ and a discharge current density between 0.1 and 5.0 mA/cm³.

 19. The lithium secondary battery according to claim 18,
- wherein the charging and the discharging is performed at a charge current density between 0.2 and 4.0 mA/cm³ and a discharge current density between 0.2 and 4.0 mA/cm³.
- 20. The lithium secondary battery according to claim 15, wherein the charging and the discharging is performed for 1
- 21. The lithium secondary battery according to claim 20, wherein the charging and the discharging is performed for 1
- 22. The lithium secondary battery according to claim 15, wherein the battery is in a charged or discharged condition after the battery is charged and discharged.
- 23. The lithium secondary battery according to claim 20, wherein the battery is in a condition of being charged or discharged after the battery is charged and discharged.
- 24. The lithium secondary battery according to claim 20, wherein the battery has an open circuit voltage (OCV) in the range of 1.0 to 5.5V after the battery is charged and
- 25. The lithium secondary battery according to claim 24, wherein the battery has an open circuit voltage (OCV) in the range of 1.5 to 4.5V after the battery is charged and

CAS Formulus

检索制剂或配方

点击下拉菜单,浏览并设置运算符

Operator Enter one term

Required ablets

单击执行检索

Optional

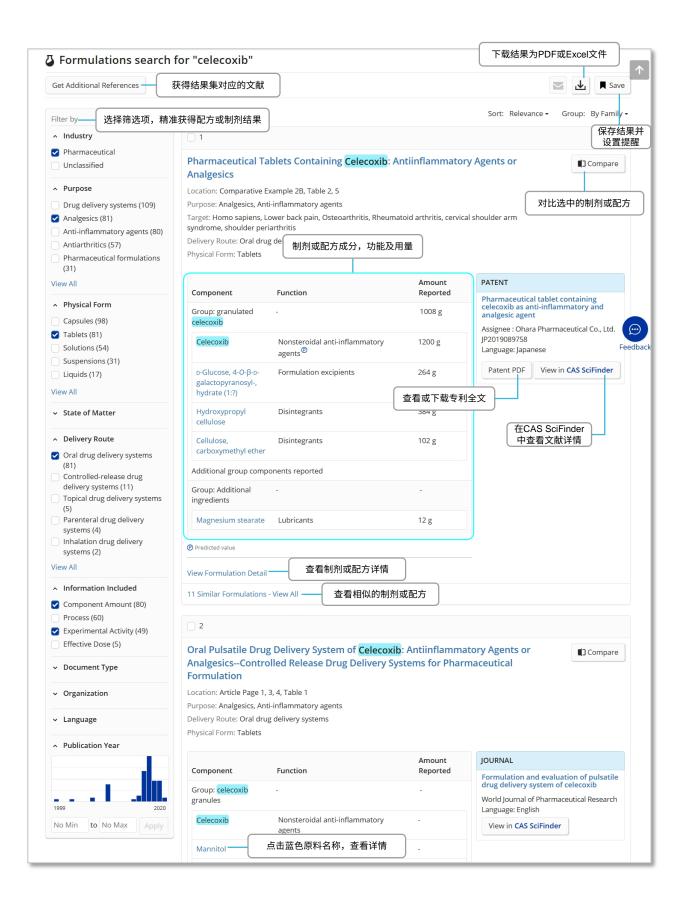
Excluded

Search For

Add Another Term

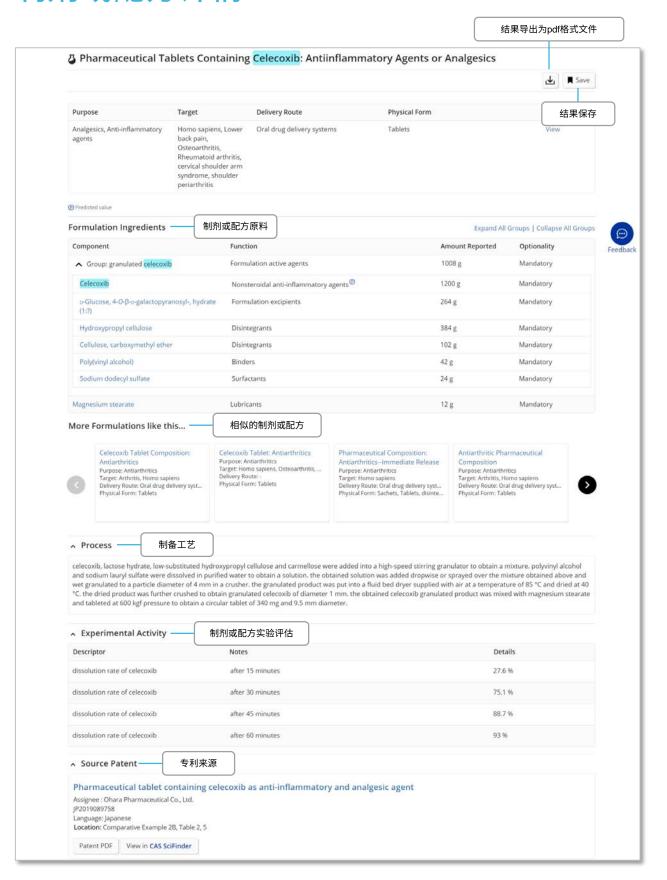
Q Search

Ingredient

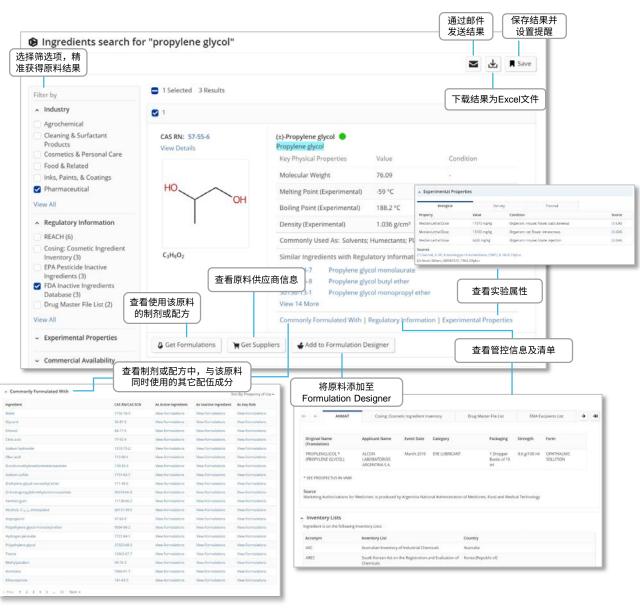

Purpose Route

Target

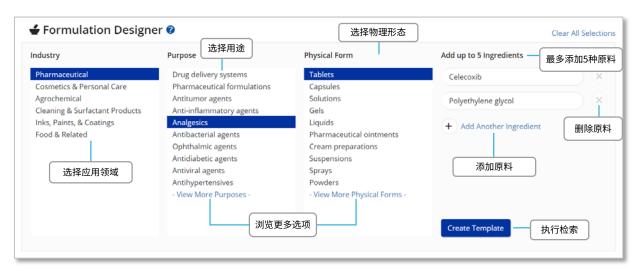
添加新的检索项

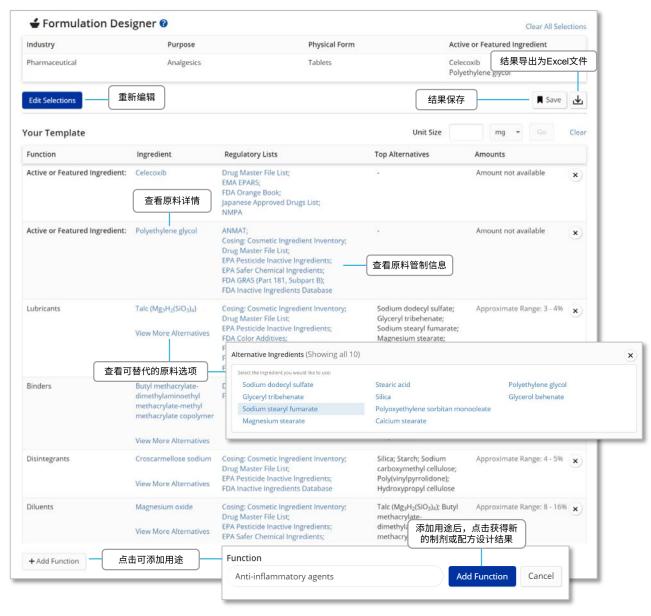

清除所有内容

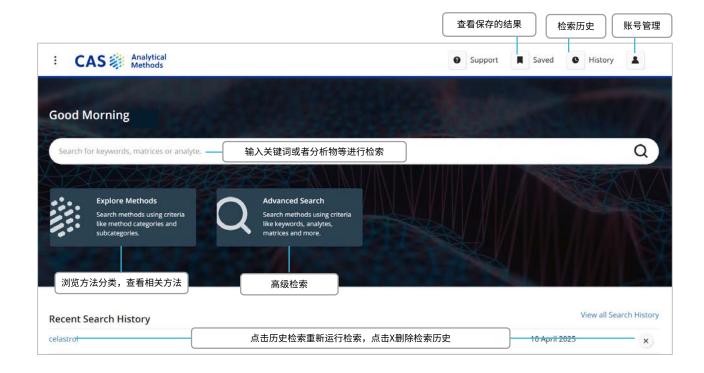
Clear All



制剂或配方详情


检索配方成分



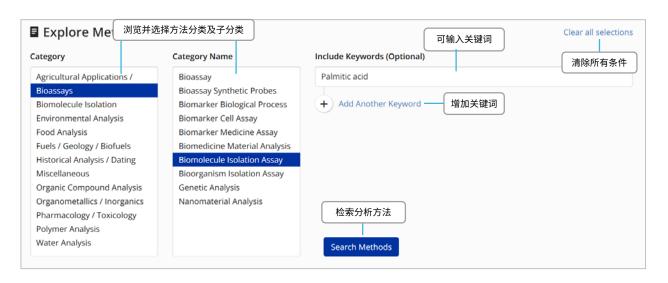

设计制剂或配方

CAS Analytical Methods

分析方法检索

高级检索

分析方法的分类检索

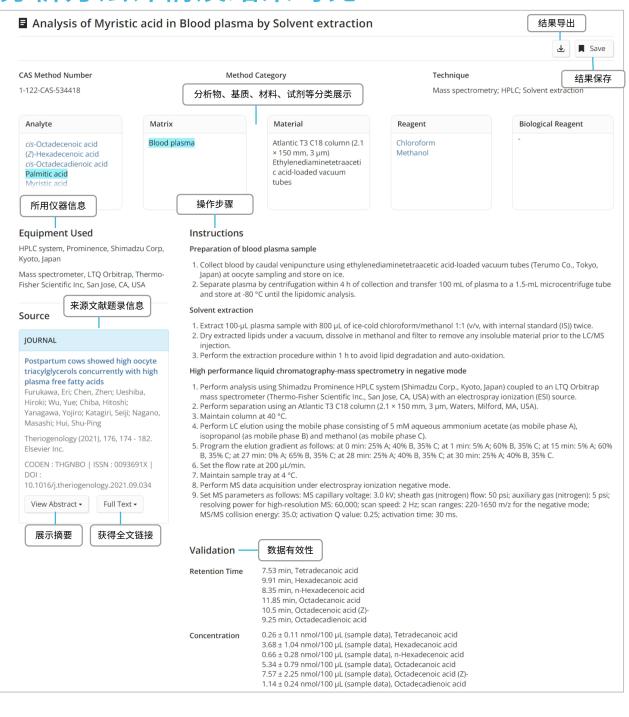

Concentration (4) Linearity Range (3)

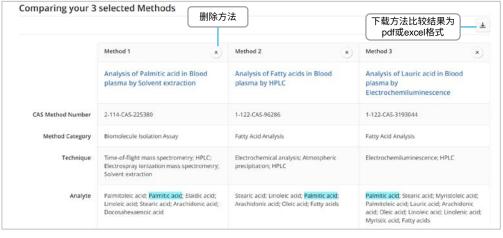
Retention Time (3)
Limit of Detection (2)

Limit of Quantitation (1)

2

spectrometry




Analysis of Butyric acid in Blood plasma by Electrospray ionization tandem mass

JOURNAL

■1 Compare

分析方法详情及结果对比

登录,培训,支持

登录详情

请访问 <u>scifinder-n.cas.org</u> 登录

使用您现有的CAS SciFinder用户名和密码。

培训

即将举行的活动和网络研讨会:

https://www.cas.org/cas-webinars?attendance=Coming+soon

过往活动和网络研讨会录像:

https://www.cas.org/cas-webinars?attendance=On+demand

培训内容:

https://www.cas.org/training/platform/cas-scifinder-discovery-platform

支持

如需获取有关 CAS SciFinder 使用的其他帮助,请联系 CAS 中国代表处。

电话: 010-62508026/7 电子邮箱: china@acs-i.org

网址: https://www.cas.org/contact

美国化学文摘社(CAS)链接全球科学知识加速科学突破,以实现改善人们生活的愿景。CAS助力全球创新者在当今复杂的数据环境中高效定位,在创新之旅的每个阶段做出自信的决策。作为科学知识管理专家,CAS建立了全球权威的人工标引科学数据合集,提供不可或缺的信息解决方案、定制服务和专业资源。不同行业的科学家、专利专业人士和商业领袖信赖CAS,从而发现机会、降低风险、解锁共享知识,更快地获得灵感实现创新。CAS是美国化学会分支机构。

联系我们请访问 cas.org。

